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1 Introduction

The IFIP Working Group on Numerical Software and other scientists repeatedly requested that a
future arithmetic standard should consider and specify an exact dot product (EDP) [1,2]. On Nov.
18, 2009 the IEEE standards committee P1788 on interval arithmetic accepted a motion [3] for in-
cluding the EDP into a future interval arithmetic standard. In Numerical Analysis the dot product is
ubiquitous. It is not merely a fundamental operation in all vector and matrix spaces. It is the EDP
which makes residual correction effective. This has a direct and positive influence on all iterative
solvers of systems of equations. The EDP is essential for fast long real and long interval arithmetic,
as well as for assessing and managing uncertainty in computing. By operator overloading variable
precision interval arithmetic is very easy to use. With it the result of every arithmetic expression can
be guaranteed to a number of correct digits.

Actually the simplest and fastest way for computing a dot product is to compute it exactly. By
pipelining, it can be computed in the time the processor needs to read the data, i.e., it comes with
utmost speed. By a sample illustration the poster informally specifies the implementation of the EDP
on computers. While [3] defines what has to be provided, how to embed the EDP into the new
standard IEEE 754, and how exceptions like NaN are to be dealt with, the poster illustrates how
the EDP can be implemented on computers. There is indeed no simpler way of accumulating a dot
product. Any method that just computes an approximation also has to consider the relative values
of the summands. This results in a more complicated method. The hardware needed for the EDP
is comparable to that for a fast multiplier by an adder tree, accepted years ago and now standard
technology in every modern processor. The EDP brings the same speedup for accumulations at
comparable costs.

2 Informal Description for Realizing an Exact Dot Product

Let a = (ai), b = (bi) be two vectors with n components which are floating-point numbers
ai, bi ∈ F(b, l, e1, e2), for i = 1(1)n. We compute the sum

s :=
∑n

i=1 ai · bi = a1 · b1 + a2 · b2 + . . . + an · bn, ai · bi ∈ F(b, 2 · l, 2 · e1, 2 · e2), for i = 1(1)n,

where all additions and multiplications are the operations for real numbers.
All summands can be taken into a fixed-point register of length 2 · e2 + 2 · l + 2 · |e1| without loss of

information.
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Figure 1 Complete register for exact scalar product accumulation.

If the register is built as an accumulator with an adder, all summands could be added in without
loss of information. To accommodate possible overflows, it is convenient to provide a few, say k,
more digits of base b on the left. k can be chosen such that no overflows will occur in the lifetime of
the computer.

For IEEE-arithmetic double precision we have:
b = 2; 64 bits word length; 1 bit sign; 11 bits exponent; l = 53 bits; e1 = −1022, e2 = 1023. With k = 92
the entire unit consists of
L = k + 2 · e2 + 2 · l + 2 · |e1| = k + 4196 bits = 4288 bits. It can be represented by 67 words of 64 bits.
L is independent of n.

The following figure gives an informal description for realizing an EDP. The long register (here
represented as a chest of drawers) is organized in words of 64 bits. The exponent of the products
consists of 12 bits. The leading 6 bits give the address of the three consecutive drawers to which the
summand of 106 bits is added. The low end 6 bits of the exponent are used for the correct positioning
of the summand within the selected drawers. A possible carry is absorbed by the next more signifi-
cant word in which not all bits are 1. For fast detection of this word a flag is attached to each word. It
is set 1 if all bits of the word are 1. This means that a carry will propagate through the entire word. In
the figure the flag is shown as a red point. As soon as the exponent of the summand is available the
flags allow selecting and incrementing the carry word. This can be done simultaneously with adding
the summand into the selected drawers.

interface

register file (or memory access unit)

128

exp(a) exp(b) mant(a) mant(b)
11 11 53 53

adder multiplier 53 × 53

12 106
mant(a)×mant(b)

106
ringshifter

LSB0123
456

MSB

6
6

Figure 2 Mechanical computing devices equipped with the desired capability:
Burkhart Arithmometer, Glashütte, Germany, 1878; Brunsviga, Braunschweig, Germany, 1917;
MADAS, Zürich, Switzerland, 1936; MONROE, New Jersey, USA, 1956.

3 Circuitry for the Exact Dot Product
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Figure 3 Functional units, chip and board of
the vector arithmetic coprocessor XPA 3233.
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4 Two simple applications

To be successful interval arithmetic has to be complemented by some easy way to use multiple or
variable precision arithmetic. The fast and exact dot product is the tool to provide this very easily.

With the EDP quadruple or other multiple precision arithmetic can easily be provided on the com-
puter. This enables the use of higher precision operations in numerically critical parts of a compu-
tation. It helps to increase software reliability. A multiple precision number is represented as an
array of floating-point numbers. The value of this number is the sum of its components. The number
can be represented in the long register in the arithmetic unit. See the other column. Addition and
subtraction of multiple precision numbers can easily be performed in this register. Multiplication of
two such numbers is simply a sum of products. It can be computed easily and fast by means of the
EDP. For instance, using fourfold precision the product of two such numbers a = (a1 + a2 + a3 + a4)
and b = (b1 + b2 + b3 + b4) is obtained by

a · b = (a1 + a2 + a3 + a4) · (b1 + b2 + b3 + b4)

= a1b1 + a1b2 + a1b3 + a1b4 + a2b1 + . . . + a4b3 + a4b4

=
4∑

i=1

4∑

j=1
aibj.

The result is a sum of products of floating-point numbers. It is independent of the sequence in which
the summands are added.

A very impressive application is considered in [5], an iteration with the logistic equation (dynamical
system)

xn+1 := 3.75 · xn · (1 − xn), n ≥ 0.

For the initial value x0 = 0.5 the system shows chaotic behavior.
Double precision floating-point or interval arithmetic totally fail (no correct digit) after 30 iterations

while long interval arithmetic still computes correct digits of a guaranteed enclosure after 2790 iter-
ations.
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